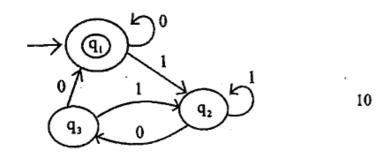
35003

(2)

BT-5/D-19

AUTOMATA THEORY

Paper-CSE-305


Time allowed: 3 hours]

[Maximum marks: 100

Note:- Attempt any five questions. Selecting at least one question from each unit. All questions carry equal marks.

Unit-I

- 1. (a) What do you mean by regular expression and also describe the following set by regular expression.
 - (i) L1-- the set of all strongs of 1's and 0's ending in 00
 - (ii) L2-- the set of all strings of 1's and 0's beginning with 0 and ending with 1
 - (iii) L3-- { \(\lambda 11, 1111, 111111..... \)}
 - (b) Construct a regular expression from the state diagram.

2. Construct the DFA equivalent to the given regular expression is $(0+1)^*(00+11)(0+1)^*(\text{step by step})$ 20

35003

[Turn over

Unit-II

Construct the Moore machine which is equivalent to Mealy machine as shown in given table:

Present state	Next state					
	Input a = 0		Input a = 1			
	State	output	State	output		
->q ₁	q_3	0	q ₂	0(
q_2	q_1	1	q,	0		
q_3	q_2	1.	$\mathbf{q}_{_{1}}$	1		
q 4	q,	1	q ₃	0		

4. Draw a minimum state automation diagram from the given table:

State /Σ	0	1
->q ₀	q_i	q ₅
$\mathbf{q}_{\mathbf{i}}$	q_6	q_2
92	q₀	q_2
q ₃	q_2	q_6
\mathbf{q}_4	q,	q _s
q₅	q_2	q_6
q ₆	q ₆	q₄
q, .	q_6	. q ₂

35003

Unit-III

- 5. Find a grammar in Chomsky Normal Form equivalent to
 - (a) $S \rightarrow aAbB, A \rightarrow aA|a, B \rightarrow bB|b$
 - (b) $S \rightarrow aAD, A \rightarrow aB|bAB, B \rightarrow b, D \rightarrow d$ 10

10

- (a) What do you mean by Push Down Automata (PDA) and construct a PDA A accepting L={wcwTw ∈(a,b}*} by final state.
 - (b) Construct a PDA A equivalent to the following context free grammar:
 10
 S-→0BB,B-→0S|1S|0. Test Whether 010* is in N (A)

Unit-IV

7. What are different 7-tuple in Turing machine and explain their purposes and also describe which string is accepted by this Turing Machine strings are (a) 011 (b) 0011 (c) 001. the transition table of TM is given:

q is final state

Present state	Tape symbol					
	0	1	Х	Y .	В	
->q ₁	xRq_2				bRq₅	
q_2	0Rq ₂	yLq ₃		yRq ₂		
q_3	0Lq		xRq₅	yLq ₃		
q₄	0Lq4		xRq _i			
q ₅				yxRq ₅	bRq ₆	
9 6						

Design a Turing machine which can multiply two positive integers.